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Risk Assessment for CNS Damage

e NASA Radiation CPR-

— Risks to the CNS from space radiation is Priority-2 in roadmap

— Risk of CNS damage from HZE ions is highly uncertain due to
distinct energy deposition from HZE tracks

— Lower species models indicate important differences with high-LET
lons
— Insufficient data to place in category-1 of CPR
* Future
— Is there a risk for Mars mission from GCR or Solar Particle Events?
— Are there human data that can be used to bound problem?

— How can new science support development of risk assessment
model?

— What risks would be included in such a model?
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Nuclear Reaction Mechansisms in GCR Risk
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Particle Hits per Cell for HZE's with Z>12
(1000 day mission)

Radiation Particle Flux
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Doses In Individual Programs

Program Average* | Inclin. Dose* (cSv) Dose-rate
Altitude (cSv/day)
Gemini 454 km 30 0.053 0.087 20
(1370 km) (0.47) (0.47)
Apollo - - 1.22 0.13 33
(3.3) (0.39)
Skylab 381 50 7.2 0.12 9
(435) (17.0) (0.21)
STS 570 28.5 2.65 0.32 85
Alt > 450 km (7.8) (0.77)
STS 337 28.5 0.21 0.023 207
Alt.< 450 km (0.71) (0.04)
STS/Mir 341 51.6 9.9 0.072 4
(355) (14.0) (0.10)
1SS 360-450 51.6 8-18 0.05-0.1 | 280
Mars o o 40-120 0.15-0.2 | 4-8

*Maximum value in parenthesis




Mars Reference Design Mission

— Used by NASA for design studies of costs and necessary

technologies and science
— Model predictions using HZETRN and nominal shielding
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Initial Events Produced by Single
High-Energy Nuclear Tracks

Hierarchy of Damage Regions
— Correlated DNA damage (clustered SSB, DSB, etc.)
— Correlated genomic damage (regionally multiply damage sites)

— Correlated tissue damage (Micro-lesions and bystander
effects)

» High-multiplicity nuclear reactions in tissue
Does Correlated damage lead to unigue effects?
— Track structure of ions and delta-rays
— Nuclear fragmentation in cells or tissue
— Bystanders (transmittable factors, apoptotic bodies etc.)
— CNS damage



Complex DNA Breaks and Energy Imparted to DNA
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Energy Deposited in DNA
X-rays and Heavy ions are qualitatively different
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HZE lons are Distinct from Terrestrial High-LET Radiation
(Iron and alpha particle at LET = 150 keV/micron)
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Multicolor FISH of Lymphocytes
Exposed to 0.3 Gy Fe lons (1 GeV/u)




Nuclear Reaction Events and Tissue Damage

Event frequency:

— Increases with projectile mass (A 13)

Event Multiplicity’s (M)= No. of ions produced.:
— M = 3-6 for proton and neutron events

— M =3-20 for Heavy ion events

 Energy deposition in Events

— Up to several MeV deposited within a few cell layers with
Isotropic production of tissue fragments

— Events may be suppressed for large primary dose

— Are importance of events apparent using cell culture
models?



Streamer Chamber Photograph
Showing Nuclear Reaction




High Dose Events with Low LET Protons
p +1°O to p + 4a




Number of Nuclear Reactions from GCR in Tissue
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Possible Late Effects in the CNS

Damage to terminally differentiated cells in the CNS were noted as a
particular concern by NAS (1970, 1973, and 1996) for Space explorations
as well as by Todd, and Lett et al.

Concern was prompted by observation of light flashes by astronauts on
Apollo and Skylab (continues today)

— Can the destruction of a small number of un-replaceable cells lead to
deterministic effects in the CNS?

Effects observed in Cancer Patients treated with radiation for brain tumors
(25-70 Gy in 1-2 Gy fractions) include loss of 1Q, dementia, and loss in
motor function

Effects observed in animal models with low to moderate doses of heavy
lons:
— Accelerated aging (Rabin and Joseph)
— Late degradation of DNA (Williams and Lett)
— Altered motor function and taster aversion (Phillpott, Joseph and Rabin)
— Altered Dopamine expression (Joseph and Rabin)

Are their initial cellular and tissue effects possible by heavy ions and
protons that are not possible with low to moderate doses of X-rays?



Micro-lesions in Tissue: Location of Inactivated Cells
for lons with Range of 1 cm (Monte-Carlo simulations)




Cell Inactivation Final Slope Cross Sections
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Data of Kiefer, et. al., Belli et al., Thacker et al.
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Cell Killing Events from GCR
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Nominal Mission Doses

Solar minimum- nominal shielding
Low density Mars Atmosphere

Dose Eq. Dose % Probability of
(rad) (rem) Microlesion / cell
ISS (120 d) 6 13 0.3
Deep Space (120 d) 7 30 1.3
Lunar Base (120 d) 4 19 0.8
Mars Surface (120 d) 5 21 0.6
Mars Mission (1000 d) 35 150 6.7




